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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
TECHNICAL NOTE D-249

ANALYSIS OF LOW-ACCELERATION LIFTING ENTRY
FROM ESCAPE SPEED

By Frederick C. Grant
SUMMARY

An earlier analysis of lifting satellite entry for circular orbit
velocities is extended to the case of parabolic orbit velocities. Simple
formulas are derived which yield approximations to the minimum loadings
for steep entries. The general advantage of operation on the high-drag
side of maximum lift-drag ratio is demonstrated analytically. The opti-
mum character of modulation from meximum 1ift coefficient is shown.

A principal parameter is shown to be the ratio of maximum 1ift coef-
ficient to minimum drag coefficient. The analytical results are compared
with those of detailed numerical integrations for an entry vehicle with a
simplified but realistic 1ift polar.

INTRODUCTION

A 1ift program yielding low entry accelerations was proposed and
analyzed by Lees, Hartwig, and Cohen in reference 1. In the program of
reference 1, an initial period of constant resultant-force coefficient
(CR O) is followed by one of constant resultant force (R = 0) at the

end of which the vehicle has essentially leveled out and the 1lift coef-
ficient is zero. The simplified 1ift polar used in reference 1 is one
for which the drag coefficient is constant. The analysis of reference 2,
performed for circular velocities, shows that the use of realistic lift
polars leads to greater reductions in peak loading than are indicated on
the assumption of constant drag coefficient.

In reference 3, the variation of drag coefficient with 1ift coeffi-~
cient is considered, but 1lift modulation is restricted to the direction
of lower lift-drag L/D ratios for both the high- and low-drag sides of

- maximum L/D ratio. A physical argument of reference 2 indicates that
modulation toward higher L/D ratios from maximum 1ift coefficient pro-
duces the lowest peak loadings.




In the present paper an analytical formulation of the general advan-
tage of 1ift modulation on the high-drag side of maximum lift-drag ratio
is given with a special application of the analysis to the case of entry
from escape speed.

The analysis is limited by the assumptions of constant velocity
during the modulated pullup and of an exponential variation of density
with altitude. Although these assumptions can be refined, the unrefined
results are satisfactory for estimation purposes. Numerical integration
in a more exasct atmosphere seems a logical second step if better results
are required.

The scope of the analysis 1s restricted to the first pullup of the
atmospheric entry. Problems associated with the remaining trajectory
are not considered.

SYMBOLS
Cp drag coefficient
C1, 1ift coefficient
Cr resultant-force coefficient
D drag force
F net acceleration due to gravity and centrifugal force
g acceleration of gravity
H altitude above sea level
I acceleration parameter
L 1lift force
m mass
Qg total heat input
dg stagnation-point heating rate

R resultant force, JLQ + D2

T radial distance from earth's center
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S reference area
t time
v velocity
W sea-level weight
B'l scale height, --——:EE—-—
d loge p
r minimum acceleration index
Y flight-path angle, positive up
o} air density
S;bscripts:
A minimum drag
P maximum 1ift
C maximum lift~drag ratio
Q maximum lift-drag ratio on optimum polar
B point on polar intermediate to C and P
1 initial
2 final
n nth approximation
max maximum
min minimum
pe perigee distance
r radial distance
o sea level

A dot above a symbol indicates the derivative with respect to time.




ANATYSIS

The low-acceleration entry of references 1 and 2 may be divided
into three phases as indicated in figure 1. These phases are treated
separately as follows:

Approach Phase (p = 0O)

For parabolic approach orbits, the variations with radial distance r
of the velocity V and flight-path angle vy are

V2 = 2rgr (la)
r -Tpe =T sin2y (1b)

where Ipe is perigee distance and g, 1s the local acceleration of

gravity at radial distance r from the earth's center.

Constant-Loading Phase (R = 0)

Passing over the éR = 0 phase of entry, consider the R=0 por-

tion. As in reference 2, the aerodynamic coefficients are presumed to
move from P to A on the 1lift polar (fig. 2) during the R = 0 phase
of entry. The following approximations are assumed in the analysis:

7A=O

= -BH
p = Doe
V=0
sin y = vy
cos ¥y =1

The net radial acceleration F due to gravity and centrifugal force can-

not be assumed to be zero as in the circular velocity entry of reference 2.

2
In fact, for approach on a parabolic orbit F = %; - g has the value

F = gp. Since g, does not vary appreciably in the atmosphere and since
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the velocity is assumed to be constant, the approximation will be adopted
that F = g5. The lifting equation thus becomes

L + mg, = mVy (2)

Approximately 1 g unit of 1lifting acceleration is thus operative without
any loading penalty. For constant velocity, the differential relation
for a constant value of R 1is

= m— o — =

dc
aRr R, do
R - on 5 0 (3)

Introducing equation (3) into equation (2), with the additional substitu-
tions H=Vy and - dH = %?, vields after integration (ref. 2)

o, 2 28 Cr,p
Vey,© - 22 1og, a2
Rap B P B e CR,A (La)
W 2g, Ipp
or
V2.2 log °R,P
Rap _ B 7p _ © CR,A (4b)
oo 2% Ipp Tap

The third member of equation (4b) indicates the reduction in aero-
dynamic loading resulting from the extra g unit of lifting acceleration
mentioned above. The acceleration parameter Ipnp is an integral of the

aerodynamic coefficients given by

P o
Ipp = f == d log, Cg (5)
A Cr

For a given 1ift polar Ipp can be readily evaluated graphically.
(See ref. 2.)
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Constant-Coefficient Phase (Cgr = 0)
The CRr = O phase is assumed, as in reference 2, to be flown at
maximum 1ift coefficient CL,P' Since the constant-coefficient phase
separates the approach from the constant-lcading phase (fig. 1), there
is a boundary-value problem at each end. The problem is nontrivial only
2
. v
at the end beyond which R = 0. Rewriting equation (2) with g, = El'
1
and ¥ = Vy 4 yields L
dH 8
2
2 8
P 2 Vi 2, 37
C = SV1c + m —— = mV — 6
L,P 5 5V1 -~ 17 35 (6)
wvhere C; and V are constant. Integration of equation (6) with
odH = - %p- and o) = O ylelds
. 1 ]
s B(HL - Hp) 2 2
CL,P & PP+ —p— = B71° - B7p (7 .
Rewriting equation (4) with = \_/'_13 and = lo °R,P _ Hp - H ields
g eq & = Zr; g OBe CR, P - HA Y
s B(Hp - Hp) 2
IpnpCR,p 5 Pp + — T - Brp (8)
Adding equations (7) and (8), solving for pp, and substituting
CR A eld
o pp Yyields
P~ CR P A
5 Hy - Hp
LA
B 1
°© CR,AS<CL,P . T >
AP ’
W \Cr,p
for the density at the minimum altitude in terms of intial conditions. *
V12

Multiplying equation (9) by Cgr,A % = yields the peak acceleration in
terms of intial conditions as
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re 5= V1212 - B(H - Hp)
AP 2g,
= (10)
W CL,p
2 4 IAP
Cr,p

Equation (9) is transcendental in the minimum altitude Hp. It may be
H -H
readily solved by iteration. If the term due to F, which is —A?I——é,

is assumed to be zero, a first value of Hp 1s obtained as

2
71
B(Hp). = log. p. - log. £ (11a)
(A)l e "0 ego CRASCLP
—2 2 4 IAP
w CR,P
A second approximation 1s found with the relation
’ B[(H), - (Ha) tog |1 - T (s (110)
- A ] = - Og . —————————————
[ A)2 1 e r1712
In the general case, the following relation will converge on Hy:
1 - B - (HA)(n+l)
_ 2
71T
B Bﬁﬁ) n+2) (Hﬁ) n+l<J = -loge (11c)
(nt2) (ne1) B - (H),
7°r
L 11 N

With the value of Hp established, the conditlons at point P are readily

calculated. The entry is thus defined as far as the minimum altitude Hy.

For polar AQP which gives Ipp & maximum value (ref. 2) equation (10)
becomes

B 2, 2
V<7, - B(Hy - Hp
RaQp 28, =~ T ( )

W

(12)
C1,P

-1
inh G—L—
® R,A

)




The denominator of the right side of equation (12), which defines an
upper bound to the possible acceleration reduction, is plotted in fig-
ure 3. The most rapid increase in the value of the function occurs at
the lower end of the range; this indicates in a rough way that large
gains in maximum L/D ratio (low values of CR,A) do not lead to cerre-
sponding large reductions in peak loading after a certain amount of
reduction has already been achieved. Formula (12) and figure 3 allow

8 quick estimate of the minimum loading in terms of the maximum 1ift and
minimum drag coefficients. A corresponding quick estimate of Hy 1is

obtained in equation (1la) by the same substitution

2

Y
B(HA), = log, p, - logg - 1 (13)
(o]
Eﬁ;ﬁﬁ sinh=1 EELE
W CR,A

Optimum Range of Modulation

For an entry pullup to 7y = O with an R = 0 modulation phase
bounded by arbitrary points 1 and 2 on the 1lift polar, the analog to
equation (10) indicates that

= |0
R
ol I

where

C e
r=[=L\ 4+ h/1 =L g log, Cg (1k4)
CR 2 Cr

The integral term of equation (14) measures the contribution of the modu-
lation. If point 2 is considered fixed, the change in I' due to a change

of the initial point on the polar is

ar = <99L> (15)
CR 1

oM



Thus, the maximum value of TI' occurs for CR,l = CR,P‘ If variations in
point 2 are now admitted, the absolute maximum occcurs for Cr,2 = CR,A'

It is clear that if a lower limit exists on the lift coefficient to which
the modulation can be carried, the best range of modulation lies between
the minimum allowable and the maximum available 1ift coeffieients.

For the class of unmodulated entries Cg,o = Cr,1- For these cases

ar = d(9L> (16)
Cr 1

which yields the result that minimum R/W (meximum TI) occurs for maxi-
mum L/D ratio. For the peak accelerations to be equal in a constant
coefficient, maximum L/D ratio entry, and an entry from maximum 1ift
coefficient with modulation the condition

P
(8L> - (%L> = J[ ‘L d loge CR (17)
R/c R/p B CR

must hold where B marks the minimum to which the coefficients must be
reduced from P. For example, in the case of the 1ift polar of figure 2,
CL,B = 0.45. This example shows how the acceleration peak corresponding

to an unmodulated entry at maximum L/D ratio can be matched on the high-
drag side of maximum L/D ratio. Moreover, the quantity

B
CL g 10g, C
R

fc Cr ©

is the increment in TI' which the modulated entry from CL,P enjoys
when compared with modulated entry from maximum L/D ratio.

Relative Importance of Lift Modulation and Drag Modulation

It was indicated in reference 2 that the most desirable polar from
the standpoint of loading reduction was the right angle AQP shown in

Cy,p
figure 4. For this polar, the quantity I' has the value sinh™t 222,

Cr,A
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If the contributions to the value of T' of the legs AQ and QP are con-
sldered separately, the secondary influence of changes in drag coefficient
may be demonstrated. For the polar AQP

CL,p C1,p -1 %,p
rAQP = 2 4 IA = 2= 4 Ipg + IQP = ginh™™ —— (18)
Crp ¥ ozp N CR,a

The contribution of the leg AQ along which there is 1ift modulation but
no drag modulation may be written

C C
IAQ = Sinh—l< L,P> - L’Q (19)
Cr,aA/ Cr,q

For leg QP along which there is drag modulation but no 1lift modulation,

Cy, C
T - )Q _ L1P (20)

& °r,a Cgr,pP

On summing up for FAQ,P’ the contribution of leg QP cancels out

against the Cr,p/Cgr,p term of equation (18) and the third member of
equation (19). Higher values of CD,p are thus exactly offset by
resultant lower values of CL’P/CR’P. For polars which are less than

ideal, the influence of changes in drag coefficient with lift coeffi-
cient results in reduced values of TI' for the same ratios of maximum
1lift to minimum drag coefficients.

In terms of the present analysis, the increase in drag coefficient
with lift coefficient is a price that must be paid for higher 1ift coef-
ficients. When maximum 1ift coefficient is reached, there are no further
gains. If the idealization of constant velocity is dropped in the analy-
sis, the value of the drag force is found in the fact that higher 1lift
coefficients can be used at the same altitudes with the same loading
limits. The dominant position of lift coefficient is unchanged.

@ e
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Limiting Cases

Some limiting results can be derived in terms of the optimum
polar AQP of figure 4. If unmodulated entry from escape speed at maxi-
mum L/D ratio is considered as L/D - (CR,A — 0), the limiting

value of the peak loading is found to be

= EE— V1271° - B(H - Hp) (21)
€o

=}

If modulation is now admitted and again the maximum L/D ratio becomes
infinite, the limit loading is found to be

(22)

4
4

=0
]
O

The different results in the two cases can be explained in terms of
the pullout altitude Hy. In the unmodulated case, a finite 1lift coeffi-

cient for the entry implies a finite loading and finite pullout altitude.
In the modulated case, a zero 1lift coefficient implies an infinite depth
of penetration of the atmosphere to complete the pullup. The vanishing
of CR,A allows indefinite penetration without a loading penalty when

modulation is used.
RESULTS
Parameters and Initial Conditions

All results are for a vehicle with the idealized drag polar of fig-
ure 2. The aserodynamic characteristics and wing loading are as follows:

Cr,a = 0.025 (L/D)¢ = 2.8
Cr,p = 0-75
Cp,p = 0-75 W/S = 25 1b/sq ft

The value of B'l used for the approximate analysis was based on
the densities at 10° and 3 X lO5 feet of altitude in the ARDC atmosphere
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(ref. L4).

This value of B~ 1s 23,300 feet.

considered were as follows:

350,000 ft

]

By

Vi

Numerical Values

36,500 ft/sec

The initial conditions

Detailed numerical integrations of entry into the ARDC atmosphere
are compared with the analytic results for given values of 7y; and

(R/W)max in the following table (Vi = 36,500 ft/sec and

Hy = 350,000 feet):

-y, = 129 (R/W)pax = 10
Analytical Numerical | Analytical Numerical
(2) (b)

(R/M)pax - 7.6 6.30 10 10
-7, deg . 12 12 13.4 1k.7
Hy, ft . 1.24 x 107 | 1.26 x 109 | 1.17 x 102 | 1.11 x 10
-7p, deg . 0 0.51 0 0.71
Vy .o vy 0.88Vy vy 0.85Vy
CR,A - 0.025 0.0276 0.025 0.0273
CL,,A - 0 0.0113 0 0.0106
Cp,A - 0.025 0.0252 0.025 0.0251
Hp, ft . 2.11 x 107 | 2.25 x 10° | 2.05 x 107 | 2.1k x 10°
-7p, deg . 11.0 10.4 12.3 12.9
Vp « o o . vy 0.99Vy vy 0.99v,

8The values shown as occurring at A actually occur at the mini-

mum coefficient attained with (R/W). . = 6.30.
results show the minimum value of (R/W)max to be greater than 6.25.

Pps in the case of

the minimum coefficients attained.
(R/W)gax > 10.

—71 = 14.80,

Other numerical

-71 = 129, the values quoted for A occur at
Other results show that for

o o
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For -7y = 120, the analysis indicates a value of (R/W)max about
20 percent higher than that actually possible. This difference is the
combined result of the 12 percent loss of speed during the entry and the
variation of B with altitude. Since the assumptions of the analysis
lead to conservative results, use of the nonconservative equation (12)
and figure 3 gives better agreement with the numerical integrations. For
entry conditions corresponding to those given in the table, reference 1
indicates a minimum (R/W) of about 11.5 for -y; = 12°.

For the given load 1limit, (R/W)max = 10, an outstanding favorable

feature of the table is the steep entry angle, nearly 150, which corre-
sponds to a lOgo limit with modulation to zero 1lift. Strikingly

unfavorable is the low value of minimum altitude Hp, Just over

100,000 feet, corresponding to maximum 1lift modulation at a 10g, load
limit.

Entry Corridor

For a given load limit, (R/W)pax = 10, the numerical and analytic

results are compared in terms of entry corridor width in figure 5. The
CD = 0, CL % 0 curve, though taken from reference 3, is based on the

results of reference 1. The overshoot limit of the present analysis is
taken as the altitude at which the maximum 1ift coefficient in inverted
flight will produce a component of acceleration equal to g8, at para-
bolic orbit speed. Only single points are shown for the present analy-
sis representing entry from the favorable initial value, CL 1= CL P
(fig. 2). For decreasing values of CR 1 < CR p» the points move toward

the CD =0, CL # 0 curve as indicated by the arrows. Calculations
for a family of vehicles with different polars and different maximum
lift-drag ratios would result in a curve such as those shown from ref-
erence 3. Without a functional relation between I' and (L/D)max the

present analysis will not yield a generalized curve.

It is evident from figure 5 that large gains in corridor width
appear if a realistic 1lift polar is used. Whether these gains can be
realized depends on the severity of the heating problem accompanying
steep entries. In any case, the heating problem is less severe for
modulation from maximum lift coefficient (CD, CL ¥ O in fig. 5) than

for modulation from maximum 1lift-drag ratio (Cp = 0, Cp # O in fig. 5).

Heating

Some indication of the conflict to be resolved between low heating
and low accelerations is given in figure 6 for entries at escape speed
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with modulation from maximum 1ift coefficient. An approximate value
of laminar stagnation heating rate is (ref. 5)

3.15

-s5€ec

(23)

where p 1is in slugs per cubic feet and V 1is in feet per second. For-
mula (23) is applicable to 1-foot-radius spheres in the neighborhood of
satellite speed. Although use of formula (23) may not be justified at
escape speed, it offers a convenient measure of the relative heating
problems on different trajectories.

The integral of gqg with respect to time through the bottom of the

pullup yields & measure of the total heat input Qg at stagnation-point
conditions. If this heat input is absorbed by ablation, Qg is also a
measure of the amount of ablative material consumed in the pullup.

Values of Qg are shown in figure 6 along with the minimum 1ift
coefficients to which modulation was carried for a 10g, load limit.
The figure shows the highest attainable entry angles for a 10g, load

limit if the minimum 1ift coefficients attained are regarded as the
lowest allowable values. There is a rapid rise in Qg at the lowest

values of minimum 1lift coefficient which correspond to full use of the
load-reduction potential of the vehicle. For a minimum 1ift coefficient
of zero, the heat load is 5.5 times that experienced during a pullup at
maximum 1ift coefficient. However, by reduction of the entry angle
(corridor width) large corridor widths can still be maintained with
lower heat loads. For example, if the minimum 1ift coefficient is

taken as 0.2 instead of zero, Qg is 2.1 times the value corresponding
to entry at maximum 1ift coefficient. The corridor width becomes

220 kilometers instead of 387 kilometers, but both widths are large.

The strong coupling shown in figure 6 between heat load and entry
angle (corridor width) suggests that guidance capability must be con-
sidered if the conflict between heating penalty and corridor width is
to be resolved. Obviously, heating and acceleration considerations
alone are insufficient for vehicles with large lift modulation capability.

CONCLUDING REMARKS

For steep entry from satellite or escape speed, maximum 1lift coeffi-
cient is established analytically as the point from which the 1ift should
be modulated for the greatest loading reduction. In place of maximum
lift-drag ratio as an index of potential acceleration reduction for

o o
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unmodulated entries, the present analysis has a logarithmic function of
the ratic of maximum 1ift coefficient to minimum drag coefficient. The
analysis illustrates the leading position of lift-coefficient variation
as compared with drag-coefficient variation in the reduction of peak
loadings through angle-of-attack reduction.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., January 6, 1960.
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Figure 1.- Three phases of entry

considered in analysis.
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